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Introduction & ff

The work raporisd in this psper is concerned with the preblem of eon-
trolling the temperature of & spacecraft surface by means that do not put
undue demends on either the pover reguirsments or the weight. The basic
approsch taken vas to find materials vhose ratio of absorptance of solsr..

oy radiation and emittance could be changed in such a way that the total heat
: input into the surface can be balanced by 'appropriate re-amission of radia-
tion. Ideally, one would want to find Q systen of materisls whoge ratic of
absorptance (a) to emittance (z) ecan be regulated in such & wey that
- the temperature of the spsce craft is controllsble, To this end a number
of materisls vere axsmined and a gomioempirical theory that explains the
heet tronsfer in layers of homogeneous materials was developed,

The zemples reported on in the following are twe types of electrolumi=
nascent materialz - one Sylvania "Nite-lites™ and one Sierraglovw panel -
one Nickel-Barium photo-voltaic cell, one Copper-Lesd Sulphide photo-
conduclive celil, and me‘notﬁt:- Germaniun sample with a doping @éﬁ{*éﬁnf&ti@l‘a
of about 1015 donors per cet 1.2., 8 non~degenerate sample. Finslly. the
possibility of using electro~optical materials wes investigated by eimulating
their effects with polaroids.

<.
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Bxperimantal Procedures

The axpsrimantal procedurds that were followad in this work bave been
discussad in great detail alm@g(n. For completensss an abbreviasted
description is given in the folloving. |

The semplae to be mmnad wvere suspanded in 2 space simulstion chem-
bar whos® vells vare kept mr liédid nitroc,gn tamporature. The ﬁ@mp@m«»
turss at the vall and the samplas theuselves vare monitored constestly by
phcing thomocouplu upmwum As the vamples wars irrediatsd Vtth
8 nh.r simulator bsen of Mty Z the following hut rate oquuon
vas trut

1M Eaaa(mr-nemor®er ., ., (1)

HBere n aud T are the mass and temperature of the sampls; C(T) 1is ita
@pecific imat; a 1its mJ&ctﬁd axea; i.e., that am of the sample that
intercepts the intensity 1 of the solar simuletor; O(T) end  €(T)
ars the abeorptance ani mmittance of the ssmpls and A its total mrea.

P’ finslly is the yadistion absorded by the sample other thsn the scler

‘simulator fotensity; for exemple, the rediation from the chember valls.

In ordsr to determine o{t) the samples age irrsdiated vith two golar
simulator futensities I, and I,. By writing equation (1) twice for
thesa two intensitiee and subtracting ons from the othsr, ons obteins

= 2(T)
a{T) ‘:.cxl"a 12) E{ ) @ (dt) ] s 0o 0 8 o (2)

In this relation s tern ?l o P2 hag basm l@ft aut becauze LD con-

stitutes merely a minor correction to a{?). Aftar the sampls obmnsd

thmmubﬂmmqumwwt&mdoﬂmmmphm
alloved to cool down to ite orisinel equilibriun temperaturs. Bqustion
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(1) =xsduces thsn to

me(T) %%* ® P o Ae(T)T

which can be written as'2)

:me .
em) m - 2l g Cen e (3)
ae(Th - 7 )

voere T, 1s'the temperature of the walls. Xo principls sll valuss in
squetions (2) and (3 are koown vith the exception of %?: vhich vas
measured off s strip chart mcotﬁ:lpg. The valuss of u(_ﬁr); c(t), and
uﬁx were obtained by ugi.ng 8 computer. '



Absorptance and Emittence of Fleetroluninescent MMaterials

Two commercislly aveileble zamples were examined. One was = Sylvsy. .
“Nite-Lite" which consisted of en iron plate, 3" in dismeter, to which =
electroluninescent, a transperent condusting, and & protective fritted
gless layer were attached. The emittance and sbeorpiance and the gpechro
of this sample were exemined under & variety of conditions,

Referring to equation (1), it is elear that the term P shouwid noe
2180 include the electrical power put into the sample, dus to the applica-
tion of an alternating voltage, It is much less clear in which form thia
pover term should be written since a large part of it is converted into
visible light, In order to be sble to write P as a sum of one emissive
end one ab:orﬁtive term one has %o know the {nitial and final atate of tho
syatem, An additiocnal difficulty erises from the fact that the lisht out; .2
and the intersction between the asclar simulator input and the electrical
input is a function of temperaturs, In figures (1) and (2} three spsctrs)
curves are representied for sample temperatures of IV0°K and 100"}(, respe .
tively, The lower curves (run A) rapresent the spectrsl emisaion of the
Sylvenia semple with an applied 60 cycle voltege of 370 volta, peak %o po-..
The next higher curve (run B) represents the spectrum of the solar simuls-
es reflected from the sample, and the highest curve {s the spectrum cbtais. =
when the solar simuiator light was reflested from the sample as it vwes in -
state of elactroluminescence {run C).

From the results it is clear that the intensities do not 233 wp in =
ginple fashicn, Ingtead the sum of the intensities of yuns A and B is lew:
than the intensity of run C for a sample temporsture of 300°K and mors thar

the intensity of run C for a sample tempersture of 100°%K,



Due to these complications, it was decided to neglect the electri-
cal pover input ccapletely and interpret the measured values of o and
¢ a3 sbsorptances and emittances of the samples in the ztate of electro-
luminescence.

The results so avaluated are represented im Figs, 3 and L, In cass
of the run without an applied voltegs, the sample waz first cooled downi
then the solar simulator besm was turned on until the sampie reached its
new equilibrium temperature. At this stage thé beam waz turned off and
the sample allowed to e¢ool down. As diaeusned'above, one obteins a,c
and a/ec by repeating this run for two different intensities. In case of
the 60 eﬁs applied voltage, the sequence of experimental proceduiea was
the same as Just described except that the initial and final equilibrium
temporature yvas pot determined by the conditicns in the chamber alone but
also by the slectrical power imput, Figure 3 demonstrates clearly that
the pertineni parameters do not change much in the available temperature
range of 140°K to 220°K, while t© changes by a factor of two with an
applied voltige over the same temperature rangze, a on the other hand
is much less affected by the field, Although an analysis of these re-
sults cannot be given at the present time, it is clear that any model.of
electrolumiﬁescenee should be able to explain why the absorption process
hardly changes at all, while the emiesion process sppears to be critically
depandent on the externally applied field, These results finally give
riza to a larie change in the slope of the afe curve as a function of
temperature,

(3,4,5)
8ince there have besn a large number of publications on

the light emission of single crystals of luminescent materials, several
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of the reported experiments were repeated in order to determine whetheyr
the models that explain thg single erystal results msy be applied alsc
to a crystalline povder, To this end, the Sylvania semple wes excited by
square vave pulges of 100 volts with a rise time of 0.Sp sec., The light
generated in the sample vas observed with RCA 6342 A and 1P-21 photomulti-
plier tubes, The applied pulses and the amplified signal fyom the photee
multipiier were displayed on a Tektronixz 581 oscilloscope. A typical
pattern is reproduced in Fig. 5. The repetition rate of the pulses was
varied from 100 cps to 12 keps, In addition, a variety of Corning color
filters were used to attempt to determine relaxation times belonging to
various types of transitions. The result of these observations is given
in Table 1. The t's are defined in Fig. 5 and given in Table 1, It was
found that the square wave fields produce maximum luminescence whenever
the sample fields vere changing, The maximum 1ight output follows the
squaie vave rise by 30-TOusec, The light output then decreases while the
applied field is steady because the effective internsl fislds were de-
creasing due to the polarization of the sample, Generally, the light oute
put is nade up of two broad spectra; one located in the green and the
other in the blue part of the spectrum, Observations made with a yellow
snd a violet filter suggest that the transitions producing the green part
of the spectrum have a slightly faster decay time compersd to those giving
rise to the blue part of the spectrur, It was not possible, hovever, te
determine any predominant-level rvlaxation time from these data.

A simple model of a powdered polycryatanihe electroluminescent
sample mey assume that the powder is maée up of many independent single
crystals, 'eacli one with a ground-, an intermediate-, end a trapping

state. Electrons are exeited to intermediate states from vhich they
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exo decay

Lite" semple.

Square Wave Repeti~

tion Rate ¥
100 eps 0
255 cps v0
1.0 Xe 6us
2,5 Ke 6us
k.0 Ke Sus
6.0 Ke Bus
250 cps 0
1.0 Ke Sus
2.5 Ke Sus - .
250 cps 0
1.0 Ke o#
2,5 Ke Sus®

®* Peak existed, but very weak

Table 1

<
exsc

65us
S5us
S0us
bSus
kSus
4Ous
65us
60us
S5us
65us
SCus

$0un

I
decay
5.6 ms
2.2 ms
0,52 ns
>100 vs
> ho us
> 25 us
1.1 ms
0.3 ms
80 s
0.7 ms
0.3 ms

70 yus

vs no filter and yellow

from square wvave pulsing of & Sylvania "Nite-

Filter

None
None
None
Neme
Nene
None
Yellow
Yellow
Yellow
Violet
Violet

Violet

f1ltar cage.



either reccmbine or are trapped. If the lifetime of the intermediate
state is small comparad to all other pertinent times, ¢he rate at
which the traps are filled is given by

%%’ = I(¢) (¥ = n{e)] {1 = B] - DB (&)
vhere
n(t) is the number of trapped electront.
¥ is the total number of traps.
I(t} 4s the excitation rate of electroms into the traps.

(I - B) is the probability that an eleetron in an exeited
state is trapped.

D is the rate of decrease of trapped electrons.
Ir L(t) is the total light output, then
I{t) = 7 (1 (t) (1 «B) [Nan{(ec)=DBn (t)} dv.

In such an oveni;pnﬂod pricture, polycrystalline ZnS samples
should have prﬁperti.eu similar to Zn8 single erystals, One would
expect & amearing out of the single-crystal spectrs and a small change
in their predominent relaxation times, due to the perturbations present
in polycrystalline substances. The results of the experiments ere in
qualitative agreement with such a pleture,

A second commercial electroluminescent sample which was examined
in grest detail was the Sierrsglow pancl, Its dimensicns were 2" x 2%
x 2%, It comsisted of the ususl three thin leyers of metal, electro-
luninescent material, and a transparent conductor. These three layers
vere placed in between tvo plexiglass plates, For purposes of evalu~
aetion of the data, the specific heat of the sample vas taken to be that
of plexiglass, Several rums with and without applied voltages ware
made, In all cases the applied voltage was 370 voits peak to peak,

The results are presented in Figs, 6 = 9, It is seen that both per-



tinent parameters a and ¢ are very critically dependent on the "state"
of the system, While ¢ 4s almost & linearly incressing function of teme
parature for the case of no applied voltage, 400 cps. and 1 keps., it is
& linearly decreasing function of temperature at 4 kecps. This seems %o
indicate that the emission process might posasibly take place with & chare
acteristic time constant of scme value between .25 and 1 milliseeond.
A similar change in slops is clhserved for a between the no applied volisge
and the 400 cps. case. For reasons of convenience the s and s
have been plotted for the various cases in Pigures 10 and 11,

It is important to note that the final equilibrium temperature of
both electroluminescent samples was much greater vhen a field was applied
than under no=field conditions, A comparison of the final equilibrium

temperatures is giwem in Table 2.

Table 2
Applied Fleld Final
Sample Frequency] Jemparature
Sierra Glow None 220
Sierra Glow 400 cps. 275
Sierra Glow b ke, 303
Sylvania None 2h3
Sylvania 60 cps. 293

*The applied woltege wes 110 volts mms, in all cases,
Only .o. small percentage of the difference in final equilibrium temperatures
of applied-field {0 no-field muns can be attributed to Joule heating,
There, apparently, is an intrinsic property of the nmaterial wvhich causes

most of the temperature difference.
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PULSE HEIGHT (VOLTS)

FIG. 5

00V

0 100 200 300 400

TIME ()

'OSCILLOSCOPE PATTERN OF EXITATION PULSE

(TOP) AND LIGHT OUTPUT (BOTTOM) FOR SYL-
VANIA "“NITE - LIGHT" SAMPLE.
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Emjttance and Absorptance of Ni-Ba Cells

A brief atudy of q, ¢, and /g was undertsken for a photovole
taic cell. Assuming that the optical properties of & given surface
layer are mainly determined by the nurber of free electrons per unit,
volume one would expact drastic changes in these parsmeters only when
the number of free electrons is changed sppreciably., It was desirable
%o obtain immediats results to ascertain whether or not this line of
investigation would hold any promise whatsoever., PFor this reason tvwo
materials that lend themselves easily to the preparation of photovole
taie cells were chosen, These wvere Ni and Ba with electronic vork
functions of 5.01 eV and 2,50 eV, respectively. The difference in
work functions corresponds to a vavelength of about l;gso:,

The cells vere prepared in a vacuum ehambef by evaporating the
barium metal coatings onto a Ni substrate, The samples were then ra-
mnoved and placed in a nitrogen filled dry box vhere electrical contacts
vers made by scldering one vire onto the backsurface of the gsample and
another one to a washer which vas screved onto the Ba-lsyer. Since
this layer was only sbout 600 X thick, soldering could not be done, while
conducting paints, which are at times used for glueing, do not guarantee
proper contacts,

The thickness of the Ba-lsyer was determined fyrom the gecmetry
in the vacuum system and the amowmnt of evaporated Ba. In order to es-
timate the amount of radiation which penetrates to the boundary lsyer,

the eguation

8o/}

wcuo

for the skin depth was used. Here )X 4s the wavelength; ¢ the ve-
iocity of light; u the permeability of free space; and o the con-

[ -]
ductivity of Ba. For a wvavelength of 5000 A one obtains a penetration
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depth of 160 . This mesns that ebout 2% of the incident radiation does pene-
trate to the Hi-Ba junction.

Altogather four runs were made with this semple. Ooe with the full intap~
sity of the S. 8. basem and one with three quarter intemsity. These runs were
repeated with the addition of putting 2 volts across the sample which bad &
rasistance of about 0.5 2. The resulis are presented in FPigs. 12 and 13. As
can b3 sssn, nzither o nor ¢, nor thelir ratio, chznge appraciebly over & teu-
pereture range of 200°K as loig s wo elaciricel power is put iuto the ssmple.
Ths upper 1iinmit of the tempsrature is given by the power input availabls from
the solar similstor. Comparison of these thres curves with the ooes obtained
by pum 2 volts across the mpu'amm a sﬁ-inng difference. While
¢ decraases by & factor of 2 with an additional chenge in slops, a increaces by
a factor of 2 with e sinllar lavgs chengs in slope. At the prepent tims it is
not osasible to explain ’t&se rbg‘ults- -It 18, howsver, obvicus that the smis-
sic process is & great deal lass influanced by the presence of moving chanyss
tha the absorpticn procsss. An explepsaiion can poseibly bs given after & num-
ber of pertinent paramsters in the expsrimantal gotup have bésn alisred i a aye-
tematic vay. Thie was not dore in the present study because an epprecisble changs
in o and ofc can only be obtained with the holp of an unecceptable large elec- |

trical power input.
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Enittance and Absorptance of Cu=-FbS Calls

In order to check the tempsrsture depsndence of afe for a photo conduce
ting layar, & Cu<FbS cell was prepared in exactly the sars faghion as described
in the previous section for the Ni-Bs samples. m 1824 sulphide used for thsse
cells was prepared in the laboratory on the bcsie of information given else-

( ). Briefly, the matsrisl was produced by pessing Has ges through a so-
iution of lead acetata. PY pr@cipitgwd and was filtared out. It was then
dc_positod on & substrate of copper.

Using sgain the equation for the skin ds,i, ons obtains e valus § w1000 f
for a tsupsrature of 300°K. The value of the conductivity wes 25 mho/cn (7)
Thunmbugimthoﬂghtv&luororp towithinl%uhasastbm
tmdoosnotvaryb@yondﬂwmnwaooxtomx. Puhlishsdmmoftm
absorption c:o-_-v@ft‘ic::i.@n‘b‘g 7) Yyield very much larger penstration depths so that
roranquyuot&houtsz,ummmth, the incident
1ight pervaded the whols leyer of Pbs without appreciable decresse in intemeity
throughout,

Again four runs were pade; 1.e., on® with the full int:snsity solar simulae
tor beam, on» with thrae querter intemsity with and without aa applied 2 volts
across the sampls. Th® results are presented in Figs. 14 and 15.

Ons gbtgins, without clsqtrical powsr input, an almost constant valus for
¢ vhile o changes rapidly from 200°K to 240°K and rewains reasonsbly constan:
th&mtm. As two volts are put across the sample, one finds no appreciable
change in o whils ¢ decreeses by a factor of almost 5. The slapes in the curves
changs drasticelly but the important conclusion is egain that no prectical ap-
Plication for this project can be obtained by the use of FuS-Cu ce¢lis since one
ly with a large power drain does it sesm to be possible to chevs> 6/€ by any

significant amount.
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The underlying physical reasons for the behavior of o, ¢, and a/fe
have not been worked out., However, it is believed that a great deal car be
learned about the basie physics by varying the conductivity of the PbS layer

and performing & variety of expsriments with differsnt ratios of light and
electrical power input,
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Absorptance and Emittance of Germanium

A brief study of the emittaance and absorptance of a typical asmi

3
36 donoxs par cm , wes

corductor, an n-type sample of Germanium with 1V
also made. Figs. 16-18 ﬁpms@nt the obtainad results. Again ¢ and
€ do not chaage much for ths cas® of po applisd voltaye between 1552
anc 265°K, A similar situation exists for the cese of an applied voie
ts@abiving riss W & current of 75 me, although there appesrs to bs 2
slicht rise of the emittance with tempsrature. On the other hand the
emittance changes by & factor of sbout 2.5 over & tezpSrstur® rangh
_rrgu3oo°xto 360°;uﬁ;'mtmormsu. There may be two
reasons for this effect. First it is in m-mc:.}'u possible that the
thermel smittance of Germanfum actually incremeas, but second it could
algo be that ¢ appsers to increess because of the edditfonal emission of
fnfrared redistion corrssponiing to the enargy ump betwsen the conduction
end velenca bands. In addition it should bs noted that the interaction
betwesn the moving charges and the iancident solar radiation may allow
transitions for wvhich ths crystal mom@otum is not conasrved. This in
turn wvould gither eplit the suission 1ling or broeden it, depSmding on ths
details of the intaraction. The absorptences on the other hand remein
fairly constant within the assign®d e&rrors. This indicated that for a
given condition, 1.8., for & givau currdat the pumber of available states
into which electrons can be transferred during ths absorption process do
not change appreciably.

Hork with this tym o_g sompie vas not pursued any further becauvee.
it vas found again that any worthvhils changs in th® ofc ratio could
only be sbtaloed for unaccepieble high currenta.

i
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Electro-optic Effect

It appears possible to control the equilibrium temperature of a surface by
adjusting the megnitude of the E-vactor of the solar radiation incident on the
surface. This would require some type of material between the surface and the
rediation source wvhose polarization properties can be adjusted. In ordsr to test
this possibility, the simplest material to‘ use is polaroifd sheet, In the experi-
nent, a copper disc, two inches in diameter, with a thermocouple silver-soldered
on the back surface, vas suspended in the space simulation chamber in the usual
manner; A calibration run vas made to Mcinino the rate of rise of the temperse~
ture vith time for the semple alone. Two sheets of polaroid vere them suspended
in the beam in front of the sample with the planes of polarigation making an angle
of sero degrees (maximum transmission), and the heating run repeated. The planes
of polarization were then set at 45° to each other and another heating run takem.

The results are shown in Figure 1 for these three cases. It is cbviously pos-
sible to control the equilibrium temperature of the sample by adjusting the polari-
sation angle.

In order to determine whether the polarization produced by the polaroid re-
sulted in a temperature rise of the polarcid material itself, runs were made with
a thermocouple sandviched in betveen the polarcids but not in d\irect bean from the
solar simulator. A negligible temperature risc was obaserved. Measurements of the
1light reflected from the polaroids were made and it appears that most of the polari-
gation properties of polaroid are due to reflection of the non-transmitted E-vectors
in the wnpolarized incident radiation.

Since mechanical adjustment of polarizers is not very attractive in the final
system, investigations are in the planning stage to study the use of electro-optic

erystals vhich require only a DC voltage to effect the polarization change,
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THEORETICAL SECTION



Superpositioa Formulas for the Temperature Gradient Problems

Arising in the Measuremant of Absorptance and Fmittance

1, Imtroduction
1,2

In the Gerdon-type of measurement of the sbsorptance and emittence of
metals, the ssmple being messured msy be employad in sufficiently thin layere
#0 that temperature gradient effects may bq neglscted, The determinetion of ab-
sorptance and emittance from heating end cooling dsts i3 then goveined by e
first-order ordinary déifferentisl equation, and the mejor mathomaticel &ifficuii:
arises only in comnection with the numericel analytic techniques needed in core
recting for rendom snd systematic errors in the measurement,

In the cass of electrolwminescent materials, hovever, for reasons of support
and elzetrode insulation; the sleetroluminescent package must contain ene or more
layers of dielectrics, and experiment has shown thst because of their presence e
sizesdbls tempersture gradient exists across the package &uring the heating and
cooling processes. The problem of determining the sbsorptanee snd emittence of
the embedded electroluminescent material from froat and baek temperstures then
takes on an entirely more complicated coaplexion, and now requires z more exten-
sive uge of the full mathemstical spparatus of heat transfer theory .

Thé simplest case of this temperature gradient problem is that in which (a)
sbsorption of rediation (and hence emission) by the dislectrie layers may be ner-
lected, and (b} the specific heats end thermal conductivities of the materials i:-
voived may be considered temperature-independent over the temperature range of the
measurement. In this cimplest case an analysis, to be preszented in a subsequent
i'eport. shovs that, by means of a Green’s functicn approach, the problem of deter-
mining the absorptance a{T) and the emittance ¢{T) as functions of absclute
temperature T may be formulated as a palr of simultaneous linear integral equ:~
tions {n these two unknowns, Moreover, even vhen the above conditions (&) and {:)



cannot be assumed, the Graen's function approach can be expected to play & funda-
mental role.

One recalls the general philoscphy behind the Green's function approach to
the asolution of a given class of boundary-value problems on a linear opemtorao
Namely, rather than solve each problem of this class on an individual basis, one
instead devotes his sole efforrt to solving a cexrtain singular problem of this czisss,
the solution of this singular problem being called the Green's fumnction for the
class, The solutionof any other problem of the class is then derived from the
Green's function by means of a so-called superposition formula, the latter again
being characteristic of the class, For the class of heat transfer problems arising
in the Gordon-type of measurement of the shsorptance and emittance of a given type
of electroluminescent package it is the appropriate superposition formula that leads
to the integral equation formulation for a{T) and «(T), and it is the main pur-
pose of the piuent note to point out its structure. However, for purposes of
reference, and slso to establish definitions and notation for subsequent reports,
the presentation of the appropriate superposition formulas for application to tha
several possible types of electroluminescent packeges is preceded by a brief elemen~
tary reviev (without, however, any details of rigor) of the Green-type of analysis
as it applies to the equation of hes: conductiona'h the discuesion being streamliined,
a8 is presently customary, by use of the Dirac S-function technique. Although the
Gordon expariment involves a one-dimensional gecmetry'. in interests of psrspective,

the three-dimensional situation will de discussed first.

2. Three Dimensional Case, Homogensous Medfum
Consider, therefore, a homogeneous, isctropic medium occupying a region V
bounded by a surface S. The medium is to have {in egs units) a thermal conduetivity

k, a specific heat ¢, and a density o, all assumed temperature independent.



Throughout V one will imagine to exist a continuous distribution of heat Bources
of strength n(¥,t) ergs per om° per second. let the temperature (Kelvin) as =
function of position and time be specified by T(¥,t). On S one of the follcwing
types of conditions will be assumed:

(A) Prescribed surface temperature:
T = ${u,v,t) | {1)
on 8, where u and v are curvilinear coordinates ia 8,
{B) Prescribed heat flux across S:
- . Ve plu,v,t) . (2)
(C) The "redistion™ condition (corresponding to Newton's lav of
cooling): 7
kn M weh{T- T, (u,v,t)} (3)
vhere h is the so-cslled "other conductivity”™ of the material,
amd T (us¥,t) is the temperature of the environment just ad-
Jacent o S5,
(D) The mixed condition: 8 may be divided into several parts on
each of which one of the previsus three conditions prevails,
- Finally, one supposes known the temperature distribution <hroughout V at the
instant t = o, That is,
™F,0) = x (F) (say) &)
Then, under initial conditicn (h), and for any ome of the abuwe boundary condi-
tions, oﬁe inquires as to the subsequent temperature distribution T(;,t) {t>ea).
From the referances one knows that in this homogeneous, izsotropic case the

flov of hest is governed by the equation

2nm _ 3T n
Ko 7T 3" = {s)
vhere
K= ;k===
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is the thermal diffusivity of the medium. That is, the problem being posed is

that of soliving the non-homogeneous, linear partial gifferential Fquation (5)

under any of the above four boundary conditions and with initial condition (k).

The functions 4,9 and x being arbitrary, each of the bouwndary conditions de-
fines an infinite class of problems, and it is for just such a circumstsnce that
the Graen-typzs of analysis permits great economy of effort, The Green’s function
for each ciass ia defined as the solution of (5) for a singular source functisn,
and for the corresponding homogeneous boundary and initial conditions. More
specifically, for problams of class (A) one seeks a function G(F,7',t-t’), points
T and T' both lylng in V, meeting the folloving requirements:

V6 - %.g, = o 3(FF)8(t-t") (6)
¢=o(rs in Vit <) (1)
Geo(Ff on 8;allt) (8)

That is, G(;.;’,M') is the "response” of the medium when initially "quiescent”,
its boundary being alvays maintained "quiescent", to the introduction of a con-
centrated parcel of c¢p ergs of hest at the point ;'. at the instant ¢t°, PFor
problems of classes (B) and (C) boundary condition (8) is to be replaced respectively
by

B.v0mo0 (P oo 8 all t) {9)
and

kn,.V==-hd(f on 85 all t), {10}
For problems of class (D) the pertinent condition {8), (9) or (10) must de appiied
to each of the several sections into vhich 8 is divided. The existence of the
Green's function and, in particular, its implied dependence upon ¢ and t°
through their difference, should of course be rigorously proved, but will de here

accepted on intuitive grounds,



How, considering only c¢lass (AD problems for the moment, let it be supposed
thet for a given material, of given size and shepe, the Green's funetion has
been determined. Then for preassigned functions ¢{p,v,t) and x(;) the solu-
tion of the corresponding eclass {A) problem is obtained as follows, First let it
- 2 naea
be noted that the so-called adjoint Green®s function G{r,r°,t-tf), defined by tha
equation
L + &
G(r°r°°t-t0) E G(R’.ro,t°-t),

satisfies the differentisl equation
ac.

kv2G + 53 3¢ ~ = 8(r,r0)s(t-t’), ‘ (1)
the initial condition |
. >

¢ 0, (;.,r’ in V; t>1t°) A (12)

and the boundary condition“

Ceo, {r on 5; a1l t). (13)
Now, substituting from Egquations (5} and (11) into Green's second identity; |
namely.

By, (1)

I(sz'r - T‘Jg@ av = I(G ==- - &

applying the sifting property of 4( ror’), and teking note of condition (13}, one
obtains

(50, t)alt-t) = 7 (6 3T & 7 2E)av

s G(r,r' ,t=t°)n@r t)dV - K f T 2§. as.

. cD v
Now, integrating both sides with respect to ¢t from o to t" + ¢ where ¢ > o,
applying the sifting property of 8{t-t'), passing to the limit as ¢ + o, intro-
introducing boundary and initial conditions and, finally, reverting back to G 1in

place of g one obtains the superposition formula for class (A) problems, namely



T(F*,t7) = £ Glr, 0 t)y(T)av
A 4

1
* %;. S av I o{F,F,tet)n(F, t)at
g [+]

t
- K Jas' 7 ¢(u',v,t') 2% ape o s 0 o o (15)
s o ou’ ‘

the volwie and surface integrals now being carried ¢ut &n r® - space.

A similar deviation can be given for problems c¢f classes (B}, {(C) ama (D},
The corresponding superposition formulas differ froz {13) only in the surface
integral term, This term for these respective cases is found to be as follows:
For class (B) problems,

X ! et 5‘; G(r et =t Dplur ,vo £ )at?;

for class (C) problems,

.
- K s as® r T (u*,v',t?) 3G at’
s a © du’

and for clsss (D) problems.

L ¢ L} | e ao 9
-x£ as® s Q(n,vbt)-smodt

t
+xf a0 s G(T,r sttt Jp(ud v ,6¢) ae®
2 o
¢ 30
-Kyp as° gy To(u°,v',t') 2= aet
s ['s] 3\1
3
vwhere, in the last expression, 81, 8,, and 33 are the porticnz of S over vhich

are the portions of S over vhich boundary conditioms of types (A), (B) and (C)
maintain respectivaly,

3. Three-Dimensional Case, Composite Medium
Of greater ‘pertinence to the heat trensfer problems arising in the Gordon ex-
periment with electroluminescent packages is the case of camposite media, Consider,

therefore, a region V, bounded by a surface S, oecupied by two homogeneous,



jsotropie media separated by an interface 33 {FPigure 1), Let the sete of pewr=
tinent physical parsmeters of the two media be (kl, €3¢ Pye Klf and  (ky, ¢, Pue W)

respectively., Also, let ¢the sulbregions they occupy be ‘Vl and VQ, Vl belng bosadad

by 81 and 83, and \72 by 8, and 336 Finally, let n

83 dlrectad from v1 <o Vaa

Now the theory of parasbolie differemtial squations shows that, for any problem

12 be the wnit nomal ¢t

in any one of the above four classes to have a wnique soluticn in the present cass

of & composite medium, two additional spseifications must be made concernimg condi-
tions at the interface. One of thess follows from the physical requirement that

the tempersture must be everyvhere finite, mcpt, possibly, at location- of Mul
singular sources., This leads to the condition that the heat flux be continuous scross
83, That is, |

...q.‘.' J ® ¥ faﬂ«;‘m»zu a o o o o (16)

x (2
1 my, 1 My

As t0 a second condition, one possible cholce is that the temparature itself de

continuous across 83 or, briefly, that

Tl'rz a_t 53 . 9 000 (1?)’

the subseripts here, as in Fquation (1%), being an sbbreviation for the usual iimfiting
process. In practice, however, vhen the scale of observation does not pem;lﬁ ine
cluding in the mathematical analysis the binding region (th§ region of transitiom
from the one purs substence to the other), & tempsrature Giscontinulty must often
_be sssumed, In that case, in‘ adaition to condition {16), it is customery %o assums
that

- % @%.;.3 o BTy = T,), oo oo (28)

vhere Bm is the interfacial thermal condwctivity, characteristic of the pair of

materials and the natuxe of the dinding, ILet it nov be seen how the previous super-

position formules must be modified for & two-component composite medium when, in



n&-

addition to the boundary condition on S end the initial temperature distribution

throughout V,

account must be taken of condition (i6) and either of conditicns

(17} or (18),

Considering first problems of class {A), with the cholece of condi-

tion (17) at the interface, one now secks s funetion T(#,t) ouech thet

7
KPP 3T a-20 (% tn V)
h § ot clpl 1

KPP - ac M2 (3 1 V)
2 3 oPp 2

™(F.0) = y(¥) (r tn V)

'r(;,t) = ¢{u,v,t) (* on S)

and vhich, in addition, satisfies conditions (16} and {17) at S3. The Green’s

function appropriate to this class of problems is defined to be such that its adjoint

satisfies the following set of equations and comditions; nemely

Ry
xlvi-’é * %% » o G(FP0Y6(tat?)

(¥ in Vs ¥ in V)
o 3 > B>
xavgc + .g% B o §{Fes® }6{tet?)

{F in Vp, 7 n V)

=0 (r," in V, T > ¢°)

[~ T4

L")
G=o(z on S, all t)

?":é om0

a +
S
G1 = 62 (r on

" "
3G = k, 3i__ (T on S3. all t)

30 811 t)
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Applying Green's identity (1ib) seperaiely to regions v, and Vy o, intreduelig
the sppropriste informaiion from the zbove twe seds of equations and conditican,
and following through with the same seguence of amanipuwletions as used before for
the non-conpesite case, one finds thet upeon adding the resulting scuations the
eontributions from the swiace integrals over S  cancel. Then, after teking
into sccount the symusiry of ¢he Green’s fumetion (which, =zs discussed below, pre-
vails even in the composite caze), ome arrives at the superposition foxmule sponres
priate to the present case; namely

MF) m L (R, tIx(F0)ave

thlu Vé

t
a1 oavy LOLEE tet®)n (P 00 )ane

1 ¢ e <
+ dav® 2 0 0 40 ]
copp 62 "2 ! Glryr? stut?dn, (r?,2 0 dat
A 3G
= Ki éldsi g PROSICAIN 1) 3p0at°
K 0 t 9 Lt 40} G v 3
~2é’db2£¢(u9v,t)§god% {19}

It ie ecleexr how this formula generslices when there are more than two componants.
Had condition {18) beecn imposed in place of (17§ 4t would have been found
that prveisely the sese formula (10) is remched. This does not mean, of eocurse,
that the temparsbure distribution would bs the zame in the dwo cases, I¢ s the
Green’s functious thed will be Aifferent, that for the seccnd case helng fumetlior 17,
dependent upon the paramater le eharacteristic of the inderface.
Finally, for problems of elesses {2), 1C) and {D), i% lr =lesx Shat the orpioe

priate superpositica formulas can be obiained from formuls {29) by repleeing ths



surface integrals ir this formula by those having the forms given sbove &g heliny

appropriete to these respeetive cases,

k, 3ymistry of Graen’s Fumection in Cosposite Cese,

In & subsequent raport dealimg with the sutomatiie camputation of the CGrean's

function for nay of the several experimental eirevmetances awvisiag in the mozsure-
ment of absorptancs and emitteance, 4¢ will bo seen that ths number of eparabicns
yequired i comsidsrably wmeducsd 4f 2hs Green’s function is :yﬁv}sfa&f"@ Ther pres
of this symrmetry properdy seams usually given only for ¢the ¢ase of & homogeangors
medﬁmi and 8o it beeomez important for the present application to be convinesd
that the propsrty percists even for composite media.

In brief outline the proof for the homogencous cass runs as follows. Thus

copeider sgalr 8 homogeneous medium eecupying a region V  bounded by a surfaces &

P _
@t G{r,r?,%-0°) e the Green’s funchion for any ome of Yhe pravieusly fopmulutn:.

' N % &
glavses of boundary-value problems, and let C{r,r’,t=t") bo 1%z adjoint. Apply

OCreen’s idsntity te the palr of fumetlons

1 3
acd
% Ay > B @
G, = G(rgxgaibo‘c Yo
'§l end ?2 helng arbldrery points in V, thus cbiaining
: 28} - & (nv2a_
Jv 6, (XV2E, ) Egm 6,}]
20 3
% 30
=X 7 (62«3 . As,
s on 2 3

How, 4f tbe hemogenecus correlative (which, by Jefinition, the Srwun’s funetico

nust satiefy) of eny of the sbove four types of boundery conditiens lu letwidve:d

into the surface integral, it will be foumd ¢o vanish. Hense Wy, {2¢) vecaras



p » 2'\' a Q‘ e 2 .
7 I3 {KV7G,) = G,{KV G, }ldr = o

L
‘ . ol , 30, S 2, 5 fwodn 8 e
Than, zapleeing (K9 Gu) vy [ 74 = 8{lper }a{e-tt)) sma {X¥ G,) by
¥ ’

E 2 ;{—Q % @ ny 3
=% = ¢ xﬁ**’??;?? 3 ({t=t )aa integreting over all ¢, und, finnlly, tsking ints

socomn® the sifting property of the d-fimoticoms, on2 csbiains

Gf‘é - %0} “7((‘0 A& . o8
?293’1@‘32 =73 = G'g'ia'f’ast -8 ).

But by defianition of the adjoint, this may be written

& & A
G‘r2gr1§t"=‘t°) = G(glg‘g'apt"‘te)g e o o o o &21)

the desired symmetry »

Ay P

roperty .

The prooi will not ba cutlined whick substentiates the validity of {21} for
the composite czse, provids2 eonditien (15) and either of comditions (17} ox {13}
are irpossd st the interface. Conslider sgainm thes two-component case of Flgurma 1,
end spply the 2ame saquanes of mapipulztions just outlined separately to each of
the subreglone VLE, zad %’2u Two esses will have Lo be eonsiderad, accowrdivg as
roints ﬁlg and ; iie in the zzm2 subreglon cr not. Ik sither case, the fol-

2
lowing will “& the outcome 2t tue 2alculztions. In the reswliting squastions. by
wirtue of the boundaery condivions, the respsctive imtegrale over Sl and UQ
wiik vanish, lsaving enly contributions frem 830 Rowever, whaen these sguatiens

are added, tho latter contributicme will be foumd %o cancel bscaus: of the re=
gquired (alternative) chiolesz of interfscial conditicms, Integrabing the srcsulting
equation over sll T. and Saking ascouwnt of the 5&%&3 proparty of the J=fuaciiaas

one sgaln cbtains proparty [19). ft is cless thad ths zvgiment may be extsndsd te

thz casa of more hnn LWo COTDCREALS.
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6. Conclusion: The One-Dimensional Composite Case,

The desired superposition formula for the cne~dimensional geometry of the
Gordon experiment can bhe generated from that of the three-dimensional cace as
follows; Taking the case of a ¢two-component layer, one allows the region V of
Figure 1 to approach the form of & truncated circular cylinder the ratio of whose
diameter to its lenpsth becomes infinite; Let the axis of the cylinder ccineide
with the x-axis of =& rectanpular coordinate system, and let the interface coincide
with the yz=plane. Further, let the source strength n depend spatislly solely
upon x, Then, in the 1limit, the temperature also becomes spatially dependent
solely upon x and it i{s easily seen that for class (A) problems formula {(19)
reduces to

b
T(x,t) = fa G(x,x*,t)T{x*,0)dx’

+ L J dx? J‘ G{x,x" otet ' Jny (x° 87 )0t

°1”1

b
+ "T: 7 axe I* Clx,x" et I (7 8" Dae?

+ xl f T-a,t’) ¢(3G.) att

229 x'man
-k f° p,e0) 2 s’ o e c oo o {22)
° x°® x*sb

vhere a and b are respectively the thickness of the layers V1 and V20 It
is evident how formula {22) generalizes in case there are more than two components
in the multilayer.

It is formula {22) (and the corresponding formulas for the other classes of
boundary-value problems) that has been the specific target of the foregoing re-
view and vhich will form the starting point for the formulation of various heat

transfer problems that arise in the measurement of absorptence snd emittance by

the Gordon procedure,
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Detexmination of Absorptance and Emittance of Electroluminescent

Meterial from Heating and Cecling Data for an Idealfzed Model

L. Statemcnt of Problem

Experiment has shown that sgignificant temperature gradients exiet within an
electroluwnminsscant package during the heating and cooling eycles cf a measurement
of iis ebsorptance and emitianze. Moreover, st leaat 4n SChe case of some samples,
the electroluminescent meterial itself is not accessible for & dircct messurement
of its temperature. The data processing problem is then the scmewhat dffficult
one of determining from front end back temperatures the asbsorptance and emittance
of the material as a function of its temperature; the latler, howsver, not being
directly measured. The present is a progress report on a study being cerried out to
davelop mathods for this determiration. In order %o lay bare the essentisi matiie-
matical features of the problem, the following very much simplified model of an
slectiroluminescent packege, under certain hypothetical, ideeallized experimenial ecim=
cumstances, nas £irst veen studied., The model and the hypotheticsasl experimental
circumstances will later be modified and extended so as to include physieally rele-
vant factors being presently omidted.

A thin layer of solid etate material {of the order of a micren or less im thiek.
ness) is enclosed between two leyers of the pane dielectric material of thickness a
end b ecms, respectively (Figure 1). ILet k, ¢, 6, and X = k/cp be, respectively
(in cges uni%s) the thermal conductivity, the specific heat, the density, and the iz
mel diffusivity of the dfielectric malerial, all azsumed temperature indepszndent over
the temperature range of the measurenent.

Just prior to an instant ¢ = 0 the gample will be assumed o have a wmirforn

temperature T, A% ¢ = 0 ite right hand face is exposed to & beam of simuleted



solar radiation, a certain portion of vhich {depending upon the reflection coef-
ficient of the dlelectric material} is transmitted into the layer. It will be
assumed that any other source of external radiation {such as from the liquid-nitrogen-
cooled shroud) msy be neglected. Let the intensity of the transmitted bean be I,
and let it be assumed fhat, Q negligible amount of this is sbsorbed by the dielectric,
The f{lm will have some transpareney and reflectivity, dut it will be assumed that
the portion of I transmitted into layer #1 and the portion reflected back into
layer #2 both pass, without experiencing any sbsorption or further reflection, into
the outer sptécp '

Designating the tempersture (Kelvin) as & function of position and time by
T(x,t), and letting x = 0 be the location of the film, the film will then sbsord
radiation at the rate

c(Tf) I &S

vhere a(Tp) 1s its sbsorptance, indicated as & function of the film temperature
T, = T{o,t), and A° its projected ares, Simultaneously it will emit thermal
redistion st the rate |

2 ¢(Te) o Tﬁ- A,
vhere ¢(T,) 4c its hemispherical emittance, ¢ the Stefan-Boltzmann censtant, and
A 4its actual area, It is cssumed that none of this emitted radiation is sbsorved
by the dielectric.. Now, neglecting the heat capacity of the film by compariscm with
that of the surrounding dielectric materisl, °;!i_e net smount of hest

(1) - ‘ b
ne () =alT)IA° - 2¢(T ) 0T A (2)

must then be conducted awasy into the surroumding @ielcétrﬁc lgyers,

Firally, let i% be supposed that, simultsnecusly with the aiposm to simulated
solar rsdiaticn, a voltage (DC or AC) is impressed acrose the package, but by means
of slectrodes whose ndiati.ve. and thermal-conductive effects may be neglected,

However, the dielectric will be amlloved some lossiness at power frequenéiem so that



a continuous distribution of sources of strength

2 .
ni{x.t) = :5%-? {ergs per cm per see) o o o o o {2}

vill be assumed to exist throughout the dieloctric., Here R is the resistence
of the slad to axially directed current flowv and i the roct-mean~square cur-
rent (beth in cgs wits), R being assumed-temporoture indepandent over the
temperature range of the measurement.

Then, for a certain passage of time, from ¢ = 0 to t = 1 {sey), the front
and dack temperatures ol2) {b,t) and (1) (<a,t) are reccrded, the superseript
referring to heating cycle data.

Next, at the instant ¢ = ¥ the beam of inscident radisticn is suppressed
but the veltege across the sample maintained. The front and back temperatures

2) {b,t) ana '1‘(2

) {=a;t) are agairc recorded, the superscript nov referring to
cooling eycle data. Ahutu the fiim resistance to be negligible, the film now
performs 28 a sink of radiation, whese gtreagth (reckoned as a source) is

n(?(e) - =2 et o } A L.

It is being assumed that no hysteresis eoffectr are present = hence the same
ehoiss of notation for emittance ss ¢ functicn of film temperature in both Eqs, (2}
end (3).

With the above model for an electroiluminsscent package, and undsr these hypo=
thetical exparimental conditions, the problem being posed for solution is the fol-
lowings Determine the functions ofTy) and «(Ty) from the data 'rm (=m,t),
22) {b,t), T""&maat) ana 142) {b,¢) assuming, of course, that all pertinent pars-
maters ilike thermal diffusivity, specific heuf;) refiection coefficient, ete., ars
known,



2. In%grm Ejuvation Formuiation

Consider the following boundsry=velue problem in heat condustion theocry. One
i8 given a slad of homogeneocus materisl of crogs—sectional aree A, of parsmeters
ks €5 05 K, with 1ts end faces at positions x = -a end X = b, At the instant
t =0 dits temperature distridution T(x,0) &8 supposed known. Alsoc let it be sun-
pe2ed thet a continuous distxidwiion o2 hest sourece of straagtn wix %) ergs per -
par sec exists throughout the material. Then in temme of n{x, 8} 2he faftlsl
temperature distridution, and the temperature gradiemts {(9%/ 3xigmp B¢ the end
faces, let the temperature distribution T{x,t) for t > 0 be desired.

In s previous report it was shown, smong other things, that ths soluuoh ef the
problem just formulated (a cless (B) problem of that report) is given by the swper-
rvosition formula

x,t) = fo O{x,x%,6) Txy0) &’

b t
¢ode f Akt £ B{x,0,8-49) n{x®,e%) ane
CoA g e

%
¢ K[ Olz,a.tet’) jaelx’20)y g
ex’? Xo0magy

0 oo
« K ft G{x b t=t?) [Mﬁ k¢
o v S'sb

vhere O{x.x?.,t<t°}) 4s ¢ha type B Green’s fumcticm for the slsb of matericl snd is
sasvmed known. If 2 portion of the sourees mey be ragardod ev iocalized at the plane
x = 0. and heving a strength ntﬁt) ergs per see, tham {rotaining the symbol wmixn.t)

for the gontinucuz portion) this last formula muet clearly be mofifled to resd

b
T{ngt) = fa s, 2? ,6) T{x° o) ax®

1

® opA iwﬂ

14
ax’® 5 C{x. %" 8=2"} nlx®,4°) a4’



!;'S-’J/
1 ( °) n (%) at®
L P G{x o t-t % at
epAg oe e

] . 1] 4]
K £ Gx =a,tet") 2211‘,.%7&,&33 e

X mepy

=K {: (x b tet) 22 ’;:&f’—“xa_b @ o000 )

Nov let formula (4j be applied o ¢(he prescnt idealizad model of an elsetro=
luminecscent package, Firet let i3 bo aoticed that umder %the sbove nade aswuwptien
that theb dinlectric material does not participate in the abdsorption end emission
of thermal radiation; the tempersture gradients at the end faces must necassarily
be sssumed to yanish during beth the hesting and cooling cyeclies of the measurement,
The last. two integrals in Eq.(h} will ¢thus vanich, snd for the heating and cooling
process the formule reduses respectivaly to the ¢vo equations

o2 (e} = 7 i: G{xx’ &} &x°

Riz b 0 fﬁ ( 0 2% g
+ - § ax® G(» =%} 4%
ia*b,iao’A £; L x5
t (1) ;
"'===1mf G(Xgoe?ﬁt") n {¢") at® o o o o o is»
epA o 4
and
2 *
T‘ ) €39tqﬁ s f Ggﬁaxg 'ﬁ'} ?(l) {xY 9'53 &2?

=8

2 » & .
e Ri__ s ax' f O(x.x°.2=t°) at®

fasbleor =B G

T, (2) (603 gpe p
=2 f G(ﬁgof_,)%@to} Hre! (@’v A o 0 o0 o o (6)

eopA o 4
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vhere in Eq.(6) it is to be noticed that T1) (x,v) is the initial temperature
distribution for the cooling run.

Fov evaluate Pq.(5) for x = s obtaining

1)
:t'u’ (=ast) = T, f‘ Gl-a,x%,t) ax®

s B2 P o g" Glont® ,t-t*) dt®
{a¢b)epA

+;}Jf G(=8,0,t=t") n:_ﬂ (e)ae ... (n

But the left<hand side of this last equation; namely, the function 1) (=a,t),
is assumed given experimental data, Hence Eq.(7) is seen to be a linear integral
equation for nin (t).

Next, assuming this integral equation to have deen solved,. insert the now
known function n:” (t) into Eq.(5) and evaluate the latter for ¢t = t. By so

doing one obtains the initial temperature distribution 'r(ﬂ (x,¥) for the cooling

rn; namely

1l
'r‘ ) (x,¢) = T, ]b G{x,x’,t} ax°®
-8
+ Rt 5 o st G{x,x°,t=t°) at°
!Mb;cpA -a °
+ 2/ G{x,0,t=t") n{1) (¢?) at* 650 n o (8)
cepA o 4

Next, introducing information (8) into Eq.(6) and evaluating the latter for

X = «a, one odbtains 8 linear integral equation for n:a) (t); namely
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(1)

'1‘(2) (-a,t) = £: Glan,x®,6) T {x0,v) ax*

2 b A
ax® G ? t=t®) ag?
TR L ] oloasxt,tte)

+ L f G{~m,0,t=t?} n

cpA o (te) dte o ¢ o 0 o (9)

(2)
£
Assume thet (9) has been solved.

Then, finally, one needs the film temperatures 'l'u‘) (t) 4 1'(1) {o,8) and
e

2
Tg' ) (t) = r‘z) (o,t) for the respective runs; For this, one inserts the now

known functions nin (t) ena nga’ (t) 1into Eqs«(5) and (6) respectively, and
evalusta each of the latter for x = 0, obtaining

'1':,1’ (¢) B (1) (o,8) = 7 £: Glo,x® £} &b

n
- 4

: -
e M~ r oax' £ olo,x?,t-t®) ato
*bleph -a o
T | /t' Glo,0,t=t7) nu) (¢¢) ag® £10)
:ﬁo f ¢ ¢ o o o
q:d

22 (4) 5 1) (0,8) u /° Gloyxt,t) TV (xr,1) @t
4 -8

2 b t
(] 0 9 [
* a.‘,.,t“mﬁie,«!x { Glo,x? t~t%) at

s A 8 (2) (.0 0
*ﬁg G(O.ﬂ,t’t ) “f (t } és o 0 0 o o (11)

Then, solving Egs, (1), (3), (10) and (11) simultaneously, one determines the

functions afT)) end ¢(r ¢)o and the problem hes been formally solved. It is ¢o



be cbserved that in carrying out this last step one first pieks the Ty~value,
Then he determines from Eq,.(10) the comspondi;ag tovalue for insertion into
Eq.(1), and from Eq.(11) the correspomding t-value for insertion imto Eq.{3). If
t and tz are these respective t-vaiues for a preassigned walue of Ty then

the corresponding velues of. ¢ and ¢ are given by the equations

1
(T ) ﬂg ) (tl) - n(fa) (ta) e 0o 0 o o (123
« s
4 At
(2)
e(T,) == "¢ (t) o9 0o (13)
26‘l'fA

Lastlr, it is to be noted that instead of having evaluated Eqs.{(5) and (6)
for X = -3 to obtain integral equations for n:n {(t) and n(z)(t). one could
4

a8 vell have evaluated these equations for x = b, obtaining an alternative pair
of integra. equations for these two unknowns. If the pressnt modesl and the assymed
experimentil conditions were ectually walid, the two procedures, to within experi-
mental error, should yield the same result, In fact, the extent of the agreement
(or aisagri:ement) could be used &s o memsure of the validity of the assumed model
and the relevincy of the physical factors cmitted in the analysie,
3. Intxreduction of the Green's Function; Numerical Methods Under Study

The Gresn’s function for the present problem iz well knwnz,-, and, in the pre-=
sent notaticn, is given by the series

e

Glx,x?,8-t°) = 1_, 2 7 {axp [_Knata(t-tl) 1}
a¢b  a¢db nm) e

mgxug nng"eag
coe a*d cos atb ©o o 0 0 o (lb)

Substituting (1&) into Eqs. (T}, (8), (9}, €10) and {11), these became



.0 o

(- t)=T Ri‘t 1
. o *(ab)eoh * epA(atb) £ “f (”) ae®

2 T .
* GRUaET ndy °° o 4 “m(f”) oxp [ EoPaBlsti)y o
6 0 ¢ o o (?0}
1) (xot) = T + Rty + (1)“,’“0

(oblook * AaRT o

-  §
AT oy oo 25 o PUER o ier)
exXp [- xnz*e :Bt' } “9 o o.‘a 6o o (89’
12 (ca,t) = ’ > w2 (g0 r)(m * === :,b 1 ecos lml
ne}
o [- By g
aﬂ)z
R§2¢ 1 (2) .
’T‘ﬁb = cpﬂ&rb) I nf (2°) as
+ 2 oy -
(a+b)cpA nil cos ‘z:;) £ exp {- %i:%;)l n(e) (t°) ate
0~ e a6 {9°)
oM (¢) =7+ _REPT ;t n(l)(;o) a’
3 ° (atbleph [awr 4 .

2 o«
* (oYerh L t (1) 2.2
at+b)epA cos (nwa n 0 Kn' t=t
P n=) (ﬁ) ° p (t , exp [ -TKH’ et A

6 u ©o o0 o (10°)
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2) (t) = Ib T(l) (x*,7) {-i;.."' 2
=8

» 2
Kn°wot
? asb  aep L exp [« ===

n=1 (a+b)2

cos (B8 cop o¥(x’¢n). . rt?e 1 Y (2) i 0r e
a+b Cas™ ) * a8 " (asb)epA :,' no(e0) a

2 ® 2 nwa, r% , 2.2
¥ O nsl cos (-2;%) o n;‘-’) (%) exp [= ;K&A:%:i'.)] at®

(a+db)

¢ @ & o o (11‘9)

These latter equations would form the basis for programming the automatic
camputation of c(rf) and ¢(T)) for the idealised model of the present dis-
cussion. For a more realistic model, the genersl features of the above mathematical
pattern can be expected to persist - although, of course, with an ineressed come
Plexity,

Regarding auwmerical analytical methods to be progrmmmed for the solution of
integral equations (7°) and (9°), two standard methods for the numerical solution
of integral equations are umder study. The first, the polynomial methodl, consists
in assuming for u(rl) (t), say, the fom

n?) () = 1 s tF - c oo oo {15)
reg
‘for a suitable choice of degree N, Substituting (15) into (7°), and evalueting
the resulting equation for n+l values 3y {1 =1,2,, o . a+l) of % sultwly
distributed throughout the interval {(o,7), one obtains a set of n+tl 1linear equa~
tions for determining the unknown coefficients a, {r = 0,1, . . . n*tl); Similarly,

lliz’ (t) mey be determined,



-}l e

The second method, the so~called method of algebraization, consists in replaeing,
by means of & suitadble quadrature formula, the integral

t
4 "‘”(ﬂ) 0 {=a,0,t=t) ac’
o

by & smm

Nem
{m) (1)
=0 or e (%) 0 (- 0, trem= tp)

‘n-npu-lg 2 o 029 13 0)
Here ¢ o ti o o & t’ are N+l eppropristely chosen points in the interval (o,r)

and the Q‘ ,'s are guadrature mmum vhose values depend upon the quadrature
formule cnplcuoda This leads to a set of linear equations for the values of ,'(1) (¢)

at these N+1 points, Having solved for these nu) (t "a), the sample points

(tp n(1) () =y tben be moothed over by xmaa of some suitable interpolation
z

formula. Similarly for #(2) (¢).

The maxtimum degree ofrnﬁumt sctually necessary in applying these welle
established numerical analytic techniquee to ¢he present heat transfer probiems  for
the estimated smount of experimental error in the nessurement;, 1s an aspect of the
prodblem being given carefu study,
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Absorptance and Emittance of a Thin Film of Solid State
Material Enclosed Between Layers of Different

Dielectric Materials

1. Integral Equation Formulation

In a previous x'epcn‘t1 a mathematical formalism vag presenied for the detenr-
mination from Qordon-type dats the ahsorptance snd emittance of a thin film of
@l troluminescent material enclosed between tvo lavers of the same dieleetric
rial, £ simple model was assumed in order to expose the essential mathe-=
:al structure of the problem wiiii a minimm of interference from various
.cal details, With that preparation, the present report desls with the more
. case in wvhich the film is enclosed between different dielsciric materials,
er, the same assumptions regarding the experimental circimstances are ro-
4, In particular, it will still be assumed that absorpticn and emission by

lelectrics may be neglected, so that at the faces of the package the temperzture

§EEEE B EE

mts must vanish,

'hus, referring tc Figure 1, a thin film of 20lid state material positioned
at = 0 1is sandviched between two layers of dielectric material of thickness a
end , In notation of the p’re'ﬂoun report, let the sets of pertinent physiesl pare~

mete of the two dfelectrics be respectively k , ¢ ;0 , K = Klje o eand Kp o eé
i1 1 13 11
[

T x2 - léalc,‘,ozo Let Glix,,x",,tat’) end Gzix,x“ ob=t®) b2 the type B Creen’s

functions for the two layers. Then the temperature distributions T,(x. %) and
2 -

'rz(x,t) within the layers are given by the superposition formulas :

Ty (x,8) = £70, (xx% 2) Ty(x* s0) &x?

t
+ ml A !o dx° ! Gl(xexostate)n (xﬂgtﬂ) A
€391 <a ° 1



- & o (xpentee) PIUXLED] e
o]

x! X'man
% oy r9T1(x7,¢%) 0
+ K.L £ Gl(x.o,tat } Lm:a;?w]x"ao dt
[+] [>] [v] Q Q (1’

and

To(x,t) = gb Ge(x,x",t) T» {x°,0) ax’

+ t:i;f £ axe ! Gy {x,x* st=t?In, (x?,67) at?

- & § aylusoeetn) (ZEZE)) g

+ Ky L5 0 (g eet?) (FTlEI ) o

C © o o o (2)

Applying these equations to the heating and ecooling processes, taking into aecount
the assumption of vanishing temperature gradients at x = -8 and x = b, one ob=

tains the following equations:

(1)
T (x,t) = Tg 10 6 (x,x",2) ax°
=g
2
Rli f ax’ f ¢ (x,x',t-t') ae’
) clﬂlAa

| 1) ~
+ IS_ gt Gl(X,Ogt‘t') [3'!5. a::',tﬂ)]x'go at?®

o & o o o (3)

0
T(a)(x,t) - £a61(x,x°.t) T{l)(x',r) ax?

Ry4°2 |
* =i'==A fo ax? It Gl(xax"gtut") @to
b L o



(2).
: T v 4. 0 .
+ Kl g GI(XgO.t-t") [L&__%:A‘;_ﬂxo-odts

x
=] 13 O‘ Q < (i‘)
(1) |
Ta (xat) = TO gb 62 (x,x’gt) ax®
Rp1? p
' B;Tsz’g ot f Oa(xox”st=t) at?
* {2, ...
- I’ a , 3'1‘3 (x*,t )] '
Kz o 2("’0"".“) [ ¥’ - x'mo ae
v Q¢ o o o ‘5)
-L2) b 1
*2 {x,t) 'z Cplxyx®,t) ’1'; )(x“vi dx®
2
b t
* ;;;;E{» &® 76 (xpx! tet?) a0
2)
t a'rg {x?,¢°)
-~ K 7 G (x.0,tet?) [Saaai] ac’
2 [ Glxeos 3x? x°mo
¢ o0 o o {6)

On the basis of these last four equations the desired c('l‘r) and c('rf) are

formally determined as follows. One first notes that the ng,l’(g) and ng”gt)

of the previous report; nemely

"m(t) = of{7{1}) ;e o ¢(r(1)) Tm“ A
£ 4 4 £

o 0 5 o o {(7)
o) w - enl?) Tmh A oo o (8)
£ 1 4 4



are related to the left- and right- gradients at x = 0 by the eguations

(1)
L o, 2y L
A 1 o " 2 > )x-o
o O [+] 0 o (9’

(2) (2) (2)
n g ) . s

o0 s o (20}
(Here, as previously, it is bDeing assumed that the heat capacity of the filn
itself is negligible.) Hence, if the four gradients occurring in Eqs.(9) and
(10) can be determined, '\?')(t) and n(fz)(t) become known, From then on the
calculation for u(Tt) and c('.l'r) will proceed similarly to the previous case,
To dstermine these gradients, first introduce the heating data Tu’(-a,t}
into Eq.(3), cbtaining

T{l)(-a,t) =T, £: Gy (-a,x°,t) dx®

R).12 0 t
¢ e [ &% [T G, (=a,x?,tet?) dt°
cp As _, o +
11
t a'r( )( 0,t?)
+ K I Gylengo.tat?) (22X ] at?
lo x° x'=0
o o o [+] [#] (n)
any (1)
Since all quantities in this last equation are known except (Ta@) o this
equations constitutes an integral equation for that unknown, Assuming the latter
1)
to have been solved, substitute the now knowm (ir,}:(n,'_,) into Fq.{3), end
ax xX=0

evaluate the latter for ¢t = , This yields the initial temperature distridbution

in dielectric #1 for the cooling process; namely,
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(1)
'I'l (x,%) = T, .{: 01(1910 %) ax?

2
+BU” O axe [T 6 (x,x"1-t7) at’

- o
e 1p lAa.

Tl(l)(xo'ata)]

+ K e (x,0,%=t°) [
1]

x° xYeg dt?
© Q ] s (<] QME
Next, introdueing the now known fimction Tgl)(x,?) into Eq.(4) and inserting
the cooling date T{z’(-s.t). one obtainz an integral equatiom for (i;;lij)
X  x=0
namely
o
Tie)(»ngt) = !-a Gl(ma,,x*’ o) '1'§1)(x,t) ax?
2 o t
vl [ A 5 G (ca,x?,tet?) at®
clplk 8 =a ° :
(2)(x0 _¢9)
t 9 aTl b 4 ot 0
* Kl £ Gl( 8,0,%-t") (—— ]ano at
© o0 o o0 o (13§

It is clesr that by introducing the heating and cooling data Tz(” (v,t)

and ’l‘a(z)(baﬂ into Eqe.(5) and (6); respectively, integral equations for
ar,(1) a7,(2)
(%Jm end (=§§;===)x,° may similariy be found.

Finally, the film ¢temperature as a function of time during hesating and cosling

may be found by svaluating Eqs.{(3) and (4}, respsetively, for x = o3

2 (e « 10, ¢)
by b}

o)
0 » 0
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Ryi? o %
- s ‘ 0 & e ]
4 N £a g Gl(o,x ot=t?) at
N (1)
3T x',e
+ K f 6 (ogotett) [ond (B0,
1o 1 ox? x%=p
(& “ [ 14 13} (Eka
azid
{2) {2} o {1}, . ;
Tf {t} = 'I':1 (o,8) = / Glio,v,t) Tl )ax“,‘e) @x’
=f
2
Rli () t
[ =T, f dx" 2 o] (o.xe’tnts)) ate
c 0 -, [+ 1
"1
+ K 156 (os00tet?) [3T1(2?(‘°'ﬁ"’] ay
1 o l s=o axo XQ'O
(T3 - TR (.15)
2. Introduction of the Green’s Funetions
_ 3
Tha Green’s functions G}.“ and G2 are given by the expressionsz
Kln2ﬂ2 oy
== (et an{xt+a)
o) 208 mg“m

by 2 ®
"t ? 2, 8
Gl(x,x,tm )= =+ % mgg

cos RM{x’ee) 7
o o0 o 9 @ {5.63

8

1,2 o " St
Ge(x‘,x“gtst"} = g# b mﬁg

ngx nwx’ s
cO8 . 58 =T o o o ) ‘\L }"a 'Q L“
v % T ’

To indicete the nature of the calculation to be programmed Tve She suwicmntie

computation of a(T?) and c(Tf) consider the integral cuyundian,

L‘ﬁ“ 963:2} % Lor
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gz « Introdueing the above expression for Gy, this equation becomes
x=0 :

2 &
SR CO LY. A W L

2 2
X
2%t Ao (tat0)
=1 I #{e?) [t K ~1)%e a ] age
& o o (4 ] (18)\’
2T
vhere ¢(t) stands for (-n._)

dx Xwo®

Suppose the programing of the solution of (18) s to be based upon. the poly-~
nomial method of the previous report. Then one sssumee for ¢(t) the form

N r
¢{e) = £ pt oo oo (29}
reo '

for gsome suitable K, and secks to determine the ccefficients Ppo Intmduéing

expression (19) into Eq.{18), one obtaeins the equation

2
{1}, - Ryt
o Py Cr&?,) = Tl (ea,t) T@

¢yPyhe
Ao 6 6 {20}
vhers . _x 0242¢
Colt) = +-¥§.;.]i',+ E.l.:&,mfl(-l)ne ez f’ ¢'Te
Kmaﬂ?t“
o ae® : o0 0 0 o {21)

in vhich the integrals may be evelusted in clossd form by a recursion procedure,

lb
of t suitsbly distributed throughout the duration T of the

Next, inserting the recorded valuse of rrl(l)(..a,t) at N ¢+ 1 wvalues ¢

teg o o o tn"l



heating run, one obtains the following set of N + 1 linear equations in the

N+ 1 unknowns po, Pys o o o Pyt namsly

B
2
e .p A
1)
(5.1’2’(100.N+1) v @ ¢ & ¢ (223

The integral equations for the other three gradients may be similarly reduced.

It is clear that preliminayy to the programming of a calculation such as
one based wpon Eqe. (20), (21) and (22) one must give cereful study to such mat-
ters as the appropriate chcice of N for the given data Tl(l’l.-a,t), the rate
of eonvergence of the serias in (21) for a dielectric layer of given thicknesses
end given themal diffusivity, ete.
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